Министерство общего и профессионального образования Ростовской области Государственное бюджетное профессиональное образовательное учреждение Ростовской области "Белокалитвинский гуманитарно-индустриальный техникум"

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации в форме экзамена

по ОП.04 Техническая механика

в рамках основной профессиональной образовательной программы для специальности 13.02.13 Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

ОДОБРЕНО цикловой комиссией специальности 13.02.13 Эксплуатация и обслуживание электрического иэлектромеханического оборудования Протокол №1 от «14» февраля 2024г. Председатель Ясмания

Калабухова Л.А.

Запретитель пирестора по УВР

зубкова О.Н.

«15» февраля 2024г.

Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации в форме экзамена по ОП.04 Техническая механика разработан в соответствии с рабочей программой учебной дисциплины ОП.04 Техническая механика, положением о текущем контроле знаний и промежуточной аттестации студентов.

Разработчик:

преподаватель ГБПОУ РО «БГИТ»

Вдовенко Сергей Владимирович

СОДЕРЖАНИЕ

1.	Паспорт фонда оценочных средств	4
1.1.	Область применения фонда оценочных средств	4
1.2.	Распределение содержания учебного материала по видам контроля	5
2.	Содержание фонда оценочных средств	7
2.1.	Задания для проведения текущего контроля	7
2.2.	Задания для проведения промежуточной аттестации	11
3.	Система опенивания	19

1 Паспорт фонда оценочных средств

1.1 Область применения фонда оценочных средств

Фонд оценочные средств предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины Техническая механика.

Фонд оценочных средств включает материалы для проведения текущего контроля и промежуточной аттестации в форме экзамена.

Фонд оценочных средств разработан на основании положений

- основной профессиональной образовательной программы по специальности 13.02.13 Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям);
- учебного плана и рабочей программы учебной дисциплины Техническая механика, являющейся частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности 13.02.13 Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям).

Укрупненная группа специальностей 13.00.00 «Электро- и теплоэнергетика»

1.2 Распределение содержания учебного материала дисциплины по видам контроля

Таблица 1

Результаты освоения (объекты оценивания) ПК- профессиональные компетенции ОК – общие компетенции 3 – знания У – умения	Основные показатели оценки результата и их критерии	Формы и методы контроля и оценки результатов обучения
Знания:		
31- законы	- знание основных понятий и	Текущий
механического движения	определений;	контроль:
и равновесия; ОК 01, ОК 02, ОК 03,	- знание формул	Устный опрос по темам 1.1-1.3
ОК 04, ОК 05, ОК 09, ПК		Промежуточная
2.1, ПК 2.2		аттестация: экзамен
32- параметры	- знание основных понятий и	Текущий
напряженно-	определений;	контроль:
деформированного	- знание формул;	Устный опрос по
состояния элементов	- знание методов определения	темам 2.1-2.6
конструкций при	внутреннего напряженно-	

различных видах нагружения; ОК 01, ОК 02, ОК 03, ОК 04, ОК 05, ОК 09, ПК 2.1, ПК 2.2	деформированного состояния	Промежуточная аттестация: экзамен.
33- методики расчета на прочность и жесткость элементов конструкций при различных видах нагружения; ОК 01, ОК 02, ОК 03, ОК 04, ОК 05, ОК 09, ПК 2.1, ПК 2.2	- знание основных понятий и определений; - знание формул; - знание методов определения внутреннего напряженно-деформированного состояния	Текущий контроль: Устный опрос по темам 2.1-2.3 Промежуточная аттестация: экзамен
34- основные типы деталей машин и механизмов, основные типы разъемных и неразъемных соединений ОК 01, ОК 02, ОК 03, ОК 04, ОК 05, ОК 09, ПК 2.1, ПК 2.2	применения различных типов деталей машин и различных	Текущий контроль: Устный опрос по темам 3.1-3.2 Промежуточная аттестация: экзамен
Умения: У1- решать задачи кинематики и динамики прямолинейного и вращательного движений; ОК 01, ОК 02, ОК 03, ОК 04, ОК 05, ОК 09, ПК 2.1, ПК 2.2	- умение сформулировать правильную последовательность действий при решении задач; - умение составить расчетную схему; - умение пользоваться табличными и справочными данными; - знание размерностей величин и умение выполнять переход к размерностям в системе СИ в процессе вычислений	Текущий контроль: Оценка результатов выполнения практических работ № 3-5, защита работ
У2- определять силовые факторы, действующие на элементы конструкций; ОК 01, ОК 02, ОК 03, ОК 04, ОК 05, ОК 09, ПК 2.1, ПК 2.2	- умение сформулировать правильную последовательность действий при решении задач; - умение составить расчетную схему	Текущий контроль: Оценка результатов выполнения практических работ № 1,2, защита работ
У3- выполнять расчеты на прочность и жесткость элементов конструкций	- умение сформулировать правильную последовательность действий при решении задач;	Текущий контроль: Оценка

при воздействии внешних	- умение составить расчетную	результатов
и внутренних силовых	схему;	выполнения
факторов.	- умение пользоваться	практических
OK 01, OK 02, OK 03,	табличными и справочными	работ № 6,7,8,
ОК 04, ОК 05, ОК 09, ПК	данными;	защита работ
2.1, ΠK 2.2	- знание размерностей величин и	
	умение выполнять переход к	
	размерностям в системе СИ в	
	процессе вычислений	
У4- выполнять расчеты	- умение сформулировать	Текущий
разъемных и неразъемных	правильную последовательность	контроль:
соединений.	действий при решении задач;	Оценка
OK 01, OK 02, OK 03,	- умение составить расчетную	результатов
ОК 04, ОК 05, ОК 09, ПК	схему;	выполнения
2.1, ΠK 2.2	- умение пользоваться	практической
	табличными и справочными	работы № 9,
	данными;	защита работы
	- знание размерностей величин и	
	умение выполнять переход к	
	размерностям в системе СИ в	
	процессе вычислений	

Таблица 2

	Вид аттестации					
Содержание	Текущий ко	нтроль	Промежуточная аттестация			
учебного материала	Форма контроля	Формируе мые ЗУН	Форма контроля	Формируем ые ЗУН, ПК		
Раздел 1 Теоретическая механика	УФО, ПР1-5	31, У2				
Тема 1.1. Статика	УФО ПР1,2	31, У2	Экзамен	31-4		
Тема 1.2 Кинематика	УФО, ПРЗ	31, У1	Экзамен	31-4		
Тема 1.6 Динамика	УФО, ПР4, ПР5	31, У1	Экзамен	31-4		
Раздел 2 Сопротивление материалов	УФО, ПР6-8	32-3, У2-3				
Тема 2.1 Растяжение и сжатие	УФО, ПР6	32-3, У2-3	Экзамен	31-4		

Тема 2.2 Кручение	УФО, ПР7	32-3, У2-3	Экзамен	31-4
Тема 2.3 Изгиб	УФО, ПР8	32-3, У2-3	Экзамен	31-4
Тема 2.4 Гипотезы	УФО	32-3, У2-3	Экзамен	31-4
прочности и их				
применение				
Тема 2.5	УФО	32-3	Экзамен	31-4
Устойчивость				
сжатых стержней				
Тема 2.6 Расчет на	УФО	32-3	Экзамен	31-4
усталость				
Раздел 3	УФО, УИО,	34, У4		
Детали машин	ПР8,			
Тема 3.1	УИО ПР9	34, У4	Экзамен	31-4
Соединения деталей				
машин				
Тема 3.2	УИО,	34, У4	Экзамен	31-4
Передачи				

УФО – устный фронтальный опрос, УИО – устный индивидуальный опрос, ПР – практическая работа

2 Содержание фонда оценочных средств

2.1 Задания для проведения текущего контроля

Тема 1.1 Статика

Вопросы для проведения фронтальных опросов:

- 1. Аксиомы статики.
- 2. Связи и их реакции.
- 3. Геометрический метод определения равнодействующей силы.
- 4. Аналитическое определение равнодействующей силы.
- 5. Уравнения равновесия плоской системы сходящихся сил.
- 6. Пара сил и ее действие на тело. Момент сил относительно точки и оси.
- 7. Главный вектор и главный момент.
- 8. Уравнения равновесия плоской системы произвольно расположенных сил.
- 9. Опоры балок.
- 10. Центр тяжести. Статические моменты площадей.

Критерии оценки: См. приложение 1

Практическое занятие №1: «Равновесие плоской системы сходящихся сил»

Задание: Решить задачи на равновесие плоской системы сходящихся сил аналитическим и графическим методами в соответствии с вариантом:

Задача №1: Определить натяжение тросов АС и ВС в положении равновесия.

r				
Схема нагружения	Вариант	α, град	β, град	F, H
A 4444 _	1	30	60	50
α β β	2	45	30	35
C	3	60	45	45
$\Psi F_{_1}$	4	45	60	40
	5	30	30	30

Задача №2: Однородный шар удерживается в равновесии на гладкой наклонной плоскости с помощью веревки AB. Определить давление шара на плоскость и натяжение веревки AB.

Схема нагружения	Вариант	α, град	Вес шара G, Н
Β.ξ.	1	30	50
4 (0)	2	45	35
-(-1)	3	60	45
α	4	45	40
	5	30	30

Контрольные вопросы к защите работы:

- 1. Равновесие.
- 2. Уравнения равновесия.
- 3. Силовой многоугольник.
- 4. Плоская система сходящихся сил.

Критерии оценки: См. приложение 2

Практическое занятие №2 «Равновесие плоской системы произвольно расположенных сил»

Задание: Решить задачи на равновесие плоской системы произвольно расположенных сил в соответствии с вариантом:

Задача №1 На конце однородного стержня AB с помощью шарнира В установлен однородный диск. Диск опирается на вертикальную гладкую стену. Определить силу воздействия диска на стену

				
Схема нагружения	Вариант	Вес диска G, Н	Вес стержня	АВ, м
			AB, H	
	1	30	15	2
	2	45	20	4
	3	60	25	4
A 450	4	45	20	2
1777	5	30	15	4

Задача №2 Балка АС закреплена в шарнире С и поддерживается в горизонтальном положении веревкой АD, перекинутой через блок. Определить интенсивность распределенной нагрузки q.

хема нагружения	Вариант	α	Вес груза 1, Н	ВС, м	AС, м
-----------------	---------	---	----------------	-------	-------

Δ D	1	30	50	5	8
	2	45	35	6	8
	3	60	45	4	8
$A \stackrel{\alpha}{\underset{B}{\longleftarrow}} C$	4	45	40	7	8
В	5	30	30	3	8

Контрольные вопросы к защите работы

- 1. Уравнения равновесия.
- 2. Главный вектор
- 3. Главный момент
- 4. Плоская система произвольно расположенных сил.

Критерии оценки: См. приложение 2

Тема 1.2 Кинематика

Вопросы для проведения фронтального опроса:

- 1. Способы задания движения точки.
- 2. Скорость и ускорение точки.
- 3. Виды движения в зависимости от ускорения
- 4. Поступательное движение
- 5. Вращательное движение.
- 6. Кинематические графики
- 7. Линейная скорость и ускорение при вращательном движении.
- 8. Сложное (абсолютное) движение.
- 9. Плоскопараллельное движение.
- 10.Мгновенный центр скоростей

Критерии оценки: См. приложение 1

Практическое занятие №3 «Определение скорости и ускорения».

Задание: Решить задачи по исходным данным в соответствии с номером варианта.

Задача №1: Дано уравнение прямолинейного движения точки. Определить скорость, ускорение и пройденный путь по истечении времени t.

Уравнение движения	Вариант	a	b	c	t, c
$S=at^3+bt^2-c$	1	30	60	30	2
	2	45	30	20	4
	3	60	45	20	3
	4	45	60	40	2
	5	30	30	30	4

Задача №2: По заданному закону движения определить вид вращения, начальную угловую скорость и угловое ускорение тела. Определить время до остановки тела.

Вариант	Уравнение движения
1	$\varphi = 10 + 20t - 5t^2$
2	$\varphi = 15 + 25t - 2t^2$
3	$\varphi = 12 + 18t - 3t^2$

4	$\varphi = 18 + 22t - 4t^2$
5	$\varphi = 20 + 16t - 6t^2$

Задача №3: Для заданного положения шарнирного трехзвенника определить скорость и ускорение точки В, если известны V_A - скорость точки А и длины звеньев механизма. Указать направления скоростей и ускорений точек A, B.

Схема движения	Вариант	V _A , м/с	ОА, м	АВ, м
B	1	3	3	6
	2	4	2	4
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	6	4	8
O_{A} A $\downarrow 60^{\circ}$ $\Box C$	4	5	3	6
<i>'''''</i>	5	3	2	4

Контрольные вопросы к защите работы

- 1. Скорость.
- 2. Нормальное ускорение. Касательное ускорение.
- 3. Виды движения.
- 4. Связь линейных и угловых параметров.

Критерии оценки работы: См. приложение 2

Тема 1.3 Динамика

Вопросы для проведения фронтального опроса:

- 1. Аксиомы динамики.
- 2. Силы инерции.
- 3. Метод кинетостатики (принцип Даламбера).
- 4. Работа.
- 5. Мощность.
- 6. Механический КПД.
- 7. Потенциальная и кинетическая энергия.
- 8. Основные уравнения динамики
- 9. Теорема об изменении количества движения
- 10. Теорема об изменении кинетической энергии

Критерии оценки:

См. приложение 1

Практическое занятие №5 «Применение метода кинетостатики при решении задач динамики»

Задание: Решить задачу по исходным данным в соответствии с номером варианта.

Задача: По заданному графику изменения скорости лифта при подъеме груза определить натяжения каната, на котором подвешен лифт с грузом массой m на всех участках подъема.

Расчетная схема	Вариант	m, кг
#, м/с	1	2650
	2	2600
1 2 3		

3	2550
4	2700
5	2500

Контрольные вопросы к защите работы

- 1. Метод кинетостатики.
- 2. Силы инерции.
- 3. Условие равновесия.
- 4. Кинематические графики.

Критерии оценки работы: См. приложение 2

Практическое занятие №5 «Работа и мощность».

Задание: Решить задачи по исходным данным в соответствии с номером варианта.

Задача №1: Определить работу силы резания за время t. Скорость вращения

детали n, диаметр обрабатываемой детали d, сила резания F_{pes}.

Расчетная схема	Вариант	d, мм	n, об/мин	t, мин	F _{pe3} , кН
	1	65	130	3	1
	2	60	120	2	1,5
	3	55	130	3	2
4	4	40	120	2	1,5
IFpes	5	50	130	3	1

Задача №2: Точильный камень прижимается к обрабатываемой детали с силой Q. Какая мощность затрачивается на обработку детали, если коэффициент трения материала камня о деталь f, деталь вращается со скоростью n, диаметр детали d.

Расчетная схема	Вариант	d, мм	n, об/мин	f	Q, кH
	1	65	130	0,3	1
•	2	60	120	0,2	1,5
() 2	3	55	130	0,3	2
Fpc:	4	40	120	0,2	1,5
77777	5	50	130	0,3	1

Задача №3: Определить потребную мощность двигателя лебедки для подъема груза весом G на высоту H за время t. КПД механизма лебедки η.

megatim rejou accourt of	The point of the property of t							
Расчетная схема	Вариант	G, кH	Н, м	t, c	η			
7 +	1	3	10	2,5	0,75			
$\overline{\Omega}$	2	4	12	3	0,78			
H	3	2	8	3,5	0,8			
₹ •	4	4	10	2	0,76			
↓ <i>G</i>	5	3	12	3	0,79			

Контрольные вопросы к защите работы

- 1. Работа.
- 2. Мощность.
- 3. КПД.
- 4. Моменты инерции сечений.

Критерии оценки работы: См. приложение 2

Раздел 2 Сопротивление материалов

Тема 2.1 Растяжение и сжатие

Вопросы для проведения фронтального опроса:

- 1. Правило знаков для проекций внешних сил.
- 2. Продольные силы и нормальные напряжения.
- 3. Эпюры.
- 4. Продольные и поперечные деформации.
- 5. Условия прочности.
- 6. Закон Гука.
- 7. Коэффициент Пуассона.
- 8. Основные механические характеристики.
- 9. Диаграммы растяжения-сжатия.
- 10. Расчеты на прочность (проектный и проверочный).

Критерии оценки:

См. приложение 1

Практическое занятие №6 «Расчеты на прочность при растяжении и сжатии».

Задание: Решить задачу по исходным данным в соответствии с номером варианта.

Задача №1: Двухступенчатый стальной брус нагружен силами F_1 , F_2 , F_3 , в точках, указанных на схеме. Построить эпюры продольных сил и нормальных напряжений. Определить удлинение бруса при заданном нагружении. Проверить прочность бруса при заданном нагружении.

1 / 1	1 1		1 2 1		1 2		
Расчетная схема	Вариант	<i>a</i> , M	F ₁ , κΗ	F ₂ , кН	F ₃ , кН	A_1 , MM^2	A_2 , mm^2
	1	0,5	20	10	5	100	200
A2 F2 A1 E	2	0,6	22	12	7	120	220
	3	0,4	24	14	6	140	240
le " >le " >	4	0,5	26	16	8	160	280
	5	0,6	30	18	5	180	300

Контрольные вопросы к защите работы

- 1. Метод сечений.
- 2. Напряжения.
- 3. Условие прочности при растяжении сжатии.
- 4. Правило знаков для построения эпюр.

Критерии оценки работы: См. приложение 2

Тема 2.2 Кручение

Вопросы для проведения фронтального опроса:

- 1. Чистый слвиг.
- 2. Модуль сдвига.

- 3. Угловая деформация.
- 4. Эпюры крутящих моментов.
- 5. Условия прочности и жесткости при кручении.

Критерии оценки:

См. приложение 1

Практическое занятие №7 «Расчет на прочность и жесткость при кручении».

Задание: Решить задачу по исходным данным в соответствии с номером варианта.

Задача: Определить диаметры вала для заданной схемы нагружения. Построить эпюру крутящих моментов. Материал вала — сталь, допускаемое напряжение кручения $[\tau_{\kappa}]$, модуль упругости при сдвиге $G=8*10^4$ МПа, допускаемый угол закручивания $[\Theta]=0,02$ рад/м. Размеры a=b=c. Провести расчет для вала кольцеобразного сечения, приняв c=0,8. Сделать вывод о целесообразности выполнения вала круглого или кольцеобразного сечения, сравнив площади сечений.

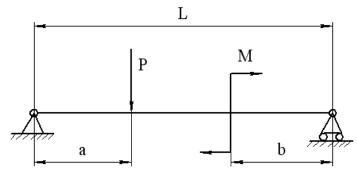
Расчетная схема	Вариант	а, м	М1, кНм	М2, кНм	М3, кНм
	1	0,5	20	10	5
44.74	2	0,6	22	12	7
M ₃ M ₂ M ₄ M ₁	3	0,4	24	14	6
	4	0,5	26	16	8
	5	0,6	30	18	5

Контрольные вопросы к защите работы

- 1. Метод сечений.
- 2. Напряжения.
- 3. Условие прочности и жесткости при кручении.
- 4. Правило знаков для построения эпюр.

Критерии оценки работы: См. приложение 2

Тема 2.3 Изгиб


Вопросы для проведения фронтального опроса:

- 1. Балка.
- 2. Законы изменения и правило знаков при построении эпюр Q и М.
- 3. Эпюры Q и M для балки с защемлением, двухопорной балки.
- 4. Построение эпюр Q и M по характерным точкам.
- 5. Расчеты на прочность при изгибе

Критерии оценки: См. приложение 1

Практическое занятие №8. Расчеты на прочность при изгибе

Задание: Провести сравнительной анализ зависимости выполнения условий прочности балки от способа закрепления по исходным данным в соответствии с номером варианта

No	Нагрузка		Расстояния, м			
вар.	Р, кН	М, кНм	L	a	b	
1	40	10		2	5	
2	42	11		3	4	
3	44	12	10	4	3	
4	46	13		5	2	
5	48	14		4	3	

Контрольные вопросы к защите работы

- 1. Что такое изгиб?
- 2. При каком нагружении балки возникает чистый изгиб?
- 3. Знаки поперечных сил и моментов при построении эпюр.
- 4. Подобрать сечение балки двутавр при том же осевом моменте сопротивления.

Критерии оценки работы: См. приложение 2

Тема 2.4 Гипотезы прочности и их применение

Вопросы для проведения фронтального опроса:

- 1. Гипотезы прочности.
- 2. Эквивалентный момент.
- 3. Эквивалентное напряжение.

Критерии оценки: См. приложение 1

Тема 2.5 Устойчивость сжатых стержней

Вопросы для проведения фронтального опроса:

- 1. Понятие устойчивости.
- 2. Формула Эйлера.
- 3. Критическая сила для различных видов закрепления стержня.
- 4. Гибкость.
- 5. Предельная гибкость.
- 6. Критическое напряжение

Критерии оценки: См. приложение 1

Тема 2.6 Расчет на усталость

Вопросы для проведения фронтального опроса:

- 1. Усталостное разрушение.
- 2. Циклы напряжений.
- 3. Амплитуда цикла.

- 4. Предел выносливости материала.
- 5. Местные напряжения.
- 6. Коэффициент концентрации напряжений.
- 7. Допускаемое напряжение при симметричных циклах растяжениясжатия, кручения, изгиба

Критерии оценки: См. приложение 1

Раздел 3 Детали машин

Тема 3.1 Соединения деталей машин

Вопросы для проведения фронтального опроса:

- 1. Сварные соединения.
- 2. Виды сварных соединений.
- 3. Клеевые соединения.
- 4. Заклепочные соединения.
- 5. Соединения с натягом.
- 6. Резьбовые соединения.
- 7. Виды резьбовых соединений.
- 8. Типы крепежных деталей.
- 9. Классификация резьб.
- 10. Стопорение резьбовых соединений.
- 11. Шпоночные соединения.
- 12. Виды шпонок.
- 13. Шлицевые соединения.
- 14. Виды профилей шлицев.

Критерии оценки: См. приложение 1

Практическое занятие №9. Расчет резьбовых соединений

Задание: Решить задачу по исходным данным в соответствии с номером варианта.

Задача №1: Круглая пила диаметром D закреплена на валу и удерживается от проворачивания за счет сил трения, возникновение которых обеспечивается затягиванием гайки на конце вала. Определить диаметр нарезанной части вала, если коэффициент трения между пилой и шайбами f, внутренний диаметр шайбы $d_{внутр}$, наружный диаметр $d_{нар}$. Сопротивление резанию F. Материал вала — сталь 35, класс прочности 5.6, предел текучести 300 МПа, коэффициент запаса прочности 4

1								
Схема закрепления	Вариант	D, мм	f	$d_{\text{внутр}}$, мм	$d_{\text{нар}}$, мм	F, H		
	1	500	0,1	100	120	350		
	2	480	0,15	100	140	330		
	3	490	0,1	100	130	320		
	4	520	0,15	100	120	360		
	5	510	0,1	100	140	340		

Контрольные вопросы к защите работы

- 1. Виды резьб.
- 2. Сила трения.

- 3. Момент трения.
- 4. Условие прочности.

Критерии оценки работы: См. приложение 2

Тема 3.2 Передачи

Вопросы для проведения индивидуального опроса:

- 1. Назначение передач.
- 2. Редуктор, мультипликатор.
- 3. Фрикционные передачи: конструкция, назначение, кинематические характеристики и схемы
- 4. Зубчатые передачи: конструкция, назначение, кинематические характеристики и схемы
- 5. Ременные передачи: конструкция, назначение, кинематические характеристики и схемы
- 6. Цепные передачи: конструкция, назначение, кинематические характеристики и схемы,
- 7. Червячные передачи: конструкция, назначение, кинематические характеристики и схемы
- 8. Планетарные передачи: конструкция, назначение, кинематические характеристики и схемы.
- 9. Валы,
- 10.Оси,
- 11.Подшипники,
- 12.Муфты

Критерии оценки: См. приложение 1

2.2 Задания для проведения промежуточной аттестации

Контрольные вопросы для подготовки к экзамену по дисциплине OП.04 Техническая механика

- 1. Аксиомы статики.
- 2. Связи и их реакции.
- 3. Геометрический метод определения равнодействующей силы.
- 4. Аналитическое определение равнодействующей силы.
- 5. Уравнения равновесия плоской системы сходящихся сил.
- 6. Пара сил и ее действие на тело. Момент сил относительно точки и оси.
- 7. Главный вектор и главный момент.
- 8. Уравнения равновесия плоской системы произвольно расположенных сил.
- 9. Опоры балок.
- 10. Центр тяжести. Статические моменты площадей.
- 11. Способы задания движения точки.

- 12. Скорость и ускорение точки.
- 13. Виды движения в зависимости от ускорения
- 14. Поступательное движение
- 15. Вращательное движение.
- 16. Кинематические графики
- 17. Линейная скорость и ускорение при вращательном движении.
- 18. Сложное (абсолютное) движение.
- 19. Плоскопараллельное движение.
- 20. Мгновенный центр скоростей
- 21. Аксиомы динамики.
- 22.Силы инерции.
- 23. Метод кинетостатики (принцип Даламбера).
- 24. Работа.
- 25. Мощность.
- 26. Механический КПД.
- 27. Потенциальная и кинетическая энергия.
- 28. Основные уравнения динамики
- 29. Теорема об изменении количества движения
- 30. Теорема об изменении кинетической энергии.
- 31. Внешние силы и внутренние силовые факторы
- 32. Метод сечений.
- 33. Напряжения (нормальное и касательное).
- 34. Механические свойства материалов.
- 35. Испытание материалов на растяжение.
- 36. Диаграммы растяжения для различных типов материалов
- 37. Предельные напряжения.
- 38. Допускаемые напряжения.
- 39. Растяжение-сжатие
- 40. Продольные и поперечные деформации.
- 41. Расчет на прочность при растяжении-сжатии.
- 42. Закон Гука при растяжении-сжатии.
- 43.Срез и смятие.
- 44. Расчеты на прочность при срезе и смятии.
- 45. Закон Гука при срезе (сдвиге)
- 46. Моменты инерции сечений.
- 47. Кручение.
- 48. Полярный момент сопротивления сечения.
- 49. Закон Гука при кручении
- 50. Расчет на прочность при кручении.

- 51. Расчет на жесткость при кручении.
- 52.Изгиб
- 53. Осевые моменты сопротивления сечения.
- 54. Расчеты на прочность при изгибе.
- 55. Сложное деформированное состояние
- 56. Расчеты на прочность с применением гипотез прочности.
- 57. Усталостное разрушение.
- 58. Устойчивость сжатых стержней.
- 59. Расчет на устойчивость.
- 60. Критические напряжения при расчете на устойчивость.
- 61. Классификация машин.
- 62. Узлы и детали машин.
- 63. Кинематические пары
- 64. Механизмы
- 65.Основные критерии работоспособности деталей машин
- 66. Сварные соединения.
- 67. Клеевые соединения.
- 68. Заклепочные соединения.
- 69. Паяные соединения
- 70. Прессовые соединения
- 71. Резьбовые соединения.
- 72. Типы крепежных деталей.
- 73. Классификация резьб.
- 74. Стопорение резьбовых соединений.
- 75. Шпоночные соединения.
- 76. Шлицевые соединения.
- 77.Валы, оси
- 78. Подшипники качения
- 79. Подшипники скольжения
- 80. Механические муфты
- 81. Корпусные детали
- 82. Классификация передач.
- 83. Основные характеристики передач.
- 84. Фрикционные передачи: конструкция, назначение, кинематические характеристики и схемы
- 85.Зубчатые передачи: конструкция, назначение, кинематические характеристики и схемы
- 86. Ременные передачи: конструкция, назначение, кинематические характеристики и схемы

- 87. Цепные передачи: конструкция, назначение, кинематические характеристики и схемы
- 88. Червячные передачи: конструкция, назначение, кинематические характеристики и схемы
- 89.Передачи винт-гайка: конструкция, назначение, кинематические характеристики и схемы
- 90.Планетарные передачи

3 Система оценивания

Приложение 1

Критерии оценки устных ответов

Оценка «5» ставится в том случае, если обучающийся:

- 1. Обнаруживает полное понимание физической сущности рассматриваемых явлений и закономерностей, знание законов и теорий, умеет подтвердить их конкретными примерами, применить в новой ситуации и при выполнении практических заданий.
- 2. Дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения.
- 3. Технически грамотно выполняет чертежи, схемы и графики, сопутствующие ответу, правильно записывает формулы, пользуясь принятой системой условных обозначений.
- 4. При ответе не повторяет дословно текст учебника, а умеет отобрать главное, обнаруживает самостоятельность и аргументированность суждений, умеет установить связь между изучаемым и ранее изученным материалом, а также с материалом, усвоенным при изучении других смежных предметов.
- 5. Умеет делать анализ, обобщения и собственные выводы по отвечаемому вопросу.
- 6. Умеет самостоятельно и рационально работать с учебником, дополнительной литературой и справочниками.

Оценка «**4**» **ставится** в том случае, если ответ удовлетворяет названным выше требованиям, но обучающийся:

- 1. Допускает одну негрубую ошибку или не более двух недочетов и может их исправить самостоятельно, или при небольшой помощи преподавателя.
- 2. Не обладает достаточным навыком работы со справочной литературой.

Оценка «3» ставится в том случае, если обучающийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но при ответе:

- 1. Обнаруживает отдельные пробелы в усвоении существенных вопросов.
- 2. Испытывает затруднения в применении знаний, необходимых для решения задач различных типов, при объяснении конкретных явлений на основе теорий и законов, или в подтверждении конкретных примеров практического применения теорий.
- 3. Отвечает на поставленные вопросы неполно, или воспроизводит содержание текста учебника, но недостаточно понимает отдельные положения, имеющие важное значение.
- 4. Обнаруживает недостаточное понимание отдельных положений при воспроизведении текста учебника, или отвечает неполно на поставленные вопросы, допуская одну-две грубые ошибки.

Оценка «2» ставится в том случае, если обучающийся:

- 1. Демонстрирует разрозненные знания учебного материала без понимания физической сущности рассматриваемых явлений и закономерностей в пределах поставленных вопросов.
- 2. Имеет слабо сформированные и неполные знания и не умеет применять их к решению конкретных вопросов и задач по образцу.
- 3. При ответе (на один вопрос) допускает более двух грубых ошибок, которые не может исправить даже при помощи преподавателя.

Критерии оценки практических работ

- 1. Перед выполнением практической работы обучающемуся необходимо ознакомиться с инструкцией к ней.
- 2. Практическая работа выполняется каждым обучающимся самостоятельно.
- 3. Каждый обучающийся составляет отчет по практической работе, содержание которого указано в инструкции к работе. Оформление отчета производится в соответствии с требованиями ГОСТ (рисунки в масштабе, единицы измерения в системе СИ).
- 4. Методом контроля выполнения практической работы является защита работы. Осуществляется при сдаче оформленного отчета о работе и заключается в устном ответе на контрольные вопросы к сдаваемой работе.
- 5. Итоговая оценка за практическую работу выставляется по совокупности оценок за выполнение работы, оформление отчета и устный ответ при защите работы. Критерии оценки устных ответов при защите работ представлены в Приложении 1.

Оценка «5» ставится в том случае, если обучающийся:

- 1. Выполнил работу в полном объеме с соблюдением необходимой последовательности.
- 2. В представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы.
- 3. Правильно выполнил требуемые вычисления, если они были предусмотрены работой.
- 4. Соблюдал требования безопасности труда.

Оценка «**4**» **ставится** в том случае, если выполнены требования к оценке «5», но:

1. Было допущено два-три недочета, или не более одной негрубой ошибки и одного недочета.

Оценка «3» ставится в том случае, если:

- 1. В отчете были допущены в общей сложности не более двух ошибок (в записи единиц измерения, в вычислениях, графиках, таблицах, схемах, и т.д.), не принципиального для этой работы характера, но повлиявших на результат выполнения.
- 2. Работа выполнена не полностью, однако объем выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы.

Оценка «2» ставится в том случае, если:

1. Работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов.